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Abstract: The process pp → t̄tbb̄ + X represents a very important background reaction

to searches at the LHC, in particular to t̄tH production where the Higgs boson decays into

a bb̄ pair. A successful analysis of t̄tH at the LHC requires the knowledge of direct t̄tbb̄

production at next-to-leading order in QCD. We take the first step in this direction upon

calculating the next-to-leading-order QCD corrections to the subprocess initiated by qq̄

annihilation. We devote an appendix to the general issue of rational terms resulting from

ultraviolet or infrared (soft or collinear) singularities within dimensional regularization.

There we show that, for arbitrary processes, in the Feynman gauge, rational terms of

infrared origin cancel in truncated one-loop diagrams and result only from trivial self-

energy corrections.
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1. Introduction

The search for new particles will be the primary task of the LHC experiment at CERN

starting this year. The discovery of new particles in the first place requires to establish

excess of events over background. The situation at the LHC is particularly complicated

by the fact that for many expected signals the corresponding background cannot entirely

be determined from data, but has to be assessed upon combining measurements in signal-

free regions with theory-driven extrapolations. To this end, a precise prediction for the

background is necessary, in particular including next-to-leading-order (NLO) corrections in

QCD. Since many of these background processes involve three, four, or even more particles

in the final state, this kind of background control requires NLO calculations at the technical

frontier. This problem lead to the creation of an “experimenters’ wishlist for NLO calcu-

lations” at the Les Houches workshop 2005 [1], updated in 2007 [2], which triggered great

theoretical progress in recent years (see for instance refs. [1 – 15] and references therein).

Meanwhile the listed processes involving at most five particles in loops have been com-

pleted in NLO QCD, including the production of WW+jet [16, 17], weak-boson pairs plus
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two jets via vector-boson fusion [18], and triple weak-boson production [9, 19]. However,

none of the true 2 → 4 processes has yet been addressed at NLO.1 Among those processes,

pp → t̄tbb̄ + X has top priority. This process has also been discussed as signal of strong

electroweak symmetry breaking [21].

The process of tt̄bb̄ production represents a very important background to t̄tH pro-

duction where the Higgs boson decays into a bb̄ pair. While early studies of t̄tH production

at ATLAS [22] and CMS [23] suggested even discovery potential of this process for a light

Higgs boson, more recent analyses [24, 25] with more realistic background assessments

show that the signal significance is jeopardized if the background from t̄tbb̄ and t̄t + jets

final states is not controlled very well. This is a clear call for improved signal and back-

ground studies based on NLO predictions to these complicated processes. For the t̄tH

signal [26, 27] and the t̄t + 1jet background [28] at the LHC such predictions have been

accomplished in recent years.

The dominant mechanism to produce t̄tbb̄ final states in hadronic collisions is pure

QCD. In leading order (LO) quark-antiquark (qq̄) and gluon-gluon (gg) initial states con-

tribute, where the latter strongly dominate at the LHC because of the high gluon flux.

Being of order α4
s the corresponding cross sections are affected by a very large scale un-

certainty, which amounts to a factor two or more. Technically the qq̄ channel is simpler to

deal with — though still demanding — and thus represents a natural first step towards a

full treatment of pp → t̄tbb̄ + X at NLO. In this paper we report on this first step and

present some details of the calculation as well as numerical results. These results do not

yet significantly improve the predictions for the LHC, but on the one hand form a building

block of the full calculation and can serve as benchmark results for other groups on the

other. Moreover, this step proves the performance of the applied strategy and methods,

providing confidence that the more complicated gg channel can be attacked widely in the

same way.

In section 2 we give a brief description of the NLO calculation, followed by numerical

results on integrated cross sections in section 3. Appendix A provides a general discussion

of rational terms in one-loop amplitudes, and appendix B outlines some technical details

concerning our treatment of the Dirac algebra. Finally, as a benchmark, in appendix C we

give numerical results for the matrix element squared in lowest order and including virtual

corrections for one phase-space point.

2. Details of the calculation

In LO QCD seven different Feynman diagrams contribute to the partonic process qq̄ →
t̄tbb̄; the various topologies are shown in figure 1. The virtual QCD corrections comprise

about 200 one-loop diagrams, the most complicated being the 8 hexagons and 24 pentagons,

which are illustrated in figure 2. The real QCD corrections in the qq̄ channel are induced

by gluon bremsstrahlung, qq̄ → t̄tbb̄g, where the corresponding 64 diagrams are obtained

from the LO graphs upon adding an external gluon in all possible ways. In the following

1Progress in the calculation of the virtual corrections to uū→ ss̄bb̄ was reported in ref. [20].
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Figure 1: Two different diagram topologies contributing to qq̄ → t̄tbb̄ in LO QCD; there are six

explicit diagrams of the first and one of the second kind.

Figure 2: Diagram topologies for pentagon and hexagon graphs contributing to qq̄ → t̄tbb̄ at one

loop in QCD; there are 24 explicit pentagons and 8 hexagons.

we briefly describe the calculation of the virtual and real corrections, where each of these

contributions has been worked out twice and independently, resulting in two completely

independent computer codes.

2.1 Virtual corrections

The general strategy for the evaluation of the one-loop corrections is based on the reduction

of the amplitude M(Γ) of each (sub)diagram Γ in the following way,

M(Γ) = C(Γ)

(
∑

m

F (Γ)
m ({(papb)})M̂m({pa})

)

, (2.1)

where the colour structure C(Γ) present in the (sub)diagram is factorized from the remaining

colour-independent part. The decomposition of the colour structure,

C(Γ) =

6∑

k=1

c
(Γ)
k Ck, (2.2)

is done in a basis {Ck} consisting of six elements, which can be chosen as

C1 = 1 ⊗ T a ⊗ T a, C2 = T a ⊗ 1 ⊗ T a, C3 = T a ⊗ T a ⊗ 1,

C4 = 1 ⊗ 1 ⊗ 1, C5 = fabc T a ⊗ T b ⊗ T c, C6 = dabc T a ⊗ T b ⊗ T c. (2.3)
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Here T a, fabc, dabc are the usual SU(3) objects, and the tensor products connect the three

fermionic chains. The LO amplitude is decomposed in colour space as

MLO =
6∑

l=1

Cl MLO
l . (2.4)

In general each loop diagram gives rise to 3n4 colour-factorized amplitudes of type (2.1),

where n4 is the number of quartic gluon vertices in the diagram. However, for most

diagrams n4 = 0, and the colour structure factorizes completely. The colour separation

implies that the computation time for individual loop diagrams does not scale with the

number of colour structures present in the basis {Ck}.
The colour-free parts of M(Γ) are written as a linear combination of so-called standard

matrix elements (SMEs) M̂m({pa}), which contain all Dirac chains and the polarization

information. Since the computing time scales with the number of SMEs, it is important to

reduce the set of SMEs {M̂m} as much as possible. To this end, we employ an algebraic

procedure based on four-dimensional relations that are derived from Chisholm’s identity

whenever their use is admitted. For massless external fermions this four-dimensional reduc-

tion has been described in detail in sections 3.1 and 3.3 of ref. [29]; here we had to generalize

this approach to one massive and two massless spinor chains. In this way some thousand

different spinor chains are reduced to about 150 SMEs M̂m({pa}). A brief description

of this procedure, which is implemented in two independent Mathematica programs, is

outlined in appendix B.

The one-loop correction to the spin- and colour-summed squared amplitude induced

by Γ reads

2Re

{
∑

col

∑

pol

M(Γ)
(
MLO

)∗

}

= 2Re

{
6∑

k=1

c
(Γ)
k

∑

m

F (Γ)
m ({(papb)})Mkm({(papb)})

}

,

(2.5)

where the interference of the LO amplitude with the elements of the SME and colour basis,

Mkm({(papb)}) =
∑

col

Ck

∑

pol

M̂m({pa})
(
MLO

)∗

=
∑

l

∑

col

CkC∗
l

∑

pol

M̂m({pa})
(
MLO

l

)∗
, (2.6)

has to be calculated only once per phase-space point. Moreover, the colour-correlation

matrix
∑

col CkC∗
l obviously is independent of the kinematics and is only calculated once

and for all. The most time-consuming components of the numerical calculation are the

scalar form factors F (Γ)
m , which are linear combinations of the Lorentz-invariant coefficients

of N -point tensor loop integrals with rank R ≤ 3 and degree N ≤ 6,

F (Γ)
m ({(papb)}) =

∑

R

∑

j1,...,jR

K(Γ)
m;j1,...,jR

({(papb)})TN
j1,...,jR

({(papb)}). (2.7)
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The evaluation of one-loop tensor integrals TN
j1,...,jR

follows the strategy of refs. [4, 5]2 that

was already successfully used to compute the NLO electroweak corrections to e+e− →
4 fermions [29, 31]. In this approach the analytic expressions are not reduced to master

integrals. In contrast, the tensor integrals are evaluated by means of algorithms that

perform a recursive reduction to master integrals in numerical form. This avoids huge

analytic expressions and permits to adapt the reduction strategy to the specific numerical

problems that appear in different phase-space regions.

The scalar master integrals are evaluated using the methods and results of refs. [32, 33].

Ultraviolet (UV) divergences are regularized dimensionally in both evaluations, but infrared

(IR) divergences are treated in different ways as described below. Following ideas from

the 1960’s [34], tensor and scalar 6-/5-point functions are directly expressed in terms of

5-/4-point integrals [4, 5].3 Tensor 4-point and 3-point integrals are reduced to scalar

integrals with the Passarino-Veltman algorithm [35] as long as no small Gram determinant

appears in the reduction. If small Gram determinants occur, two alternative schemes are

applied [5].4 One method makes use of expansions of the tensor coefficients about the

limit of vanishing Gram determinants and possibly other kinematical determinants. In

the second (alternative) method we evaluate a specific tensor coefficient, the integrand

of which is logarithmic in Feynman parametrization, by numerical integration. Then the

remaining coefficients as well as the standard scalar integral are algebraically derived from

this coefficient. The results of the two different codes, based on the different methods

described above are in good numerical agreement. Although both versions of the virtual

corrections basically follow the same strategy for the evaluation of loop integrals, they are

based on independent in-house libraries. In each of the two calculations the cancellation

of IR and UV singularities was checked with high precision in the numerical results.

Version 1 of the virtual corrections starts with the generation of Feynman diagrams

using FeynArts 1.0 [36]. Their algebraic reduction is completely performed with in-

house Mathematica routines. In detail, D-dimensional identities (Dirac algebra, Dirac

equation) are used until UV divergences cancel against counterterms. IR (soft and collinear)

divergences are regularized dimensionally and separated from full diagrams in terms of 3-

point subdiagrams as described in ref. [37]. We subtract the IR-divergent part M(Γ,D)
sing from

the amplitude M(Γ,D) of a (sub-)diagram Γ, where D indicates dimensional regularization,

and add it back. Note that M(Γ,D)
sing can be easily constructed already at the integrand

level of the whole diagram following ref. [37]. In the IR-finite and regularization-scheme-

independent difference M(Γ,D)−M(Γ,D)
sing we can then switch from dimensional regularization

to a four-dimensional scheme,

M(Γ,D) =
(

M(Γ,D) −M(Γ,D)
sing

)

+ M(Γ,D)
sing =

(

M(Γ,λ) −M(Γ,λ)
sing

)

+ M(Γ,D)
sing , (2.8)

where λ indicates any mass regulators in four dimensions. Specifically, we introduce in-

2We note in passing that the reduction methods of refs. [4, 5] have also been used in the related calcu-

lation [30] of NLO QCD corrections to the 2→ 4 particle process γγ → tt̄bb̄ at a γγ collider.
3Similar reductions are described in ref. [7].
4Similar procedures based on numerical evaluations of specific one-loop integrals [3, 7] or expansions in

small determinants [6] have also been proposed by other authors.
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finitesimal light-quark and gluon masses with the hierarchy mg ≪ mq to regularize the IR

singularities. The evaluation of M(Γ,λ) then proceeds in D = 4 − 2ǫ dimensions merely to

regularize the UV singularities, i.e. so-called rational terms resulting from (D − 4) times

poles in ǫ have to be taken care of for UV singularities, but not for IR singularities in this

part. Possible rational terms of IR origin are contained in M(Γ,D)
sing which entirely consists

of 3-point subgraphs and is thus easy to reduce to scalar 2- and 3-point integrals B0 and

C0, thereby keeping the full dependence on D. It turns out that no D-dependent pref-

actors occur in front of IR-singular integrals. In appendix A we show that this result of

our specific calculation is not accidental, but generalizes to arbitrary processes at NLO.

Technically it is easier to evaluate M(Γ,D)
sing and M(Γ,λ)

sing simultaneously according to

M(Γ,D)
sing −M(Γ,λ)

sing = M(Γ,D)
sing

∣
∣
∣
B

(D)
0 →∆B0,C

(D)
0 →∆C0

≡ ∆M(Γ)
sing, (2.9)

where ∆I = I(D) − I(λ) are the differences of the scalar integrals I = B0, C0 in the two

IR regularization schemes. Note that IR-finite integrals drop out in ∆M(Γ)
sing completely.

Having cancelled UV divergences against counterterms and controlled the D-dimensional

issues concerning IR singularities, the amplitude is further simplified in four space-time di-

mensions. Specifically, the reduction of SMEs described in appendix B is performed then.

The IR-divergent “endpoint part” of the dipole subtraction function, i.e. the contribu-

tion of the I operator as defined in ref. [38], is processed through the described algebraic

manipulations in the same way as LO and one-loop amplitudes. The algebraic Mathe-

matica output of each diagram is automatically processed to Fortran for the numerical

evaluation.

Version 2 of the virtual corrections employs FeynArts 3.2 [39] for generating and

FormCalc 5.2 [40] for preprocessing the amplitudes. The first part of the calculation

is performed in D dimensions. In particular, the so-called rational terms resulting from

the UV divergences of tensor loop coefficients are automatically extracted by FormCalc.

Since the IR divergences that appear in the qq̄ channel are of abelian nature, we exploit

the fact that they can be regularized as in QED by means of fermion and gauge-boson

(gluon) masses, mq and mg. These masses are treated as infinitesimal quantities (with

mg ≪ mq) both in the algebraic expressions and in the numerical routines that evaluate

the tensor integrals, i.e. only the logarithmic dependence on these mass parameters is

retained. Corresponding IR singularities associated with real emission have been obtained

from ref. [38] by means of an appropriate change of regularization scheme.

Being of diagrammatic nature, the employed techniques are sometimes denoted as

“brute force” methods. This choice of the terminology might suggest scarce efficiency. In

fact, the performance of the algorithms is a very important issue that should be assessed by

means of those quantities that describe the problematic aspects of NLO multi-leg calcula-

tions: numerical accuracy and CPU time. In this respect our treatment of the virtual cor-

rections is characterized by high numerical precision and speed. The numerical agreement

between the two programs is good, and the CPU time needed to evaluate a phase-space

point (including sums over colours and polarizations) amounts to about 10−2 seconds on a
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single 3GHz Intel Xeon processor. This provides a benchmark that can be compared with

the efficiency of other approaches.

2.2 Real corrections

In both evaluations of the real corrections the amplitudes are calculated in the form of

helicity matrix elements. The singularities for soft or collinear gluon emission are isolated

via dipole subtraction [38, 41 – 43] for NLO QCD calculations using the formulation [38]

for massive quarks. After combining virtual and real corrections, singularities connected

to collinear configurations in the final state cancel for “collinear-safe” observables auto-

matically after applying a jet algorithm, singularities connected to collinear initial-state

splittings are removed via MS QCD factorization by PDF redefinitions. While soft and

collinear singularities have to be regularized in the “endpoint part” of the subtraction

function, i.e. the part of the subtraction terms that has to be combined with the virtual

corrections, no regularization is needed in the subtraction terms for the real corrections.

In both evaluations the phase-space integration is performed with multichannel Monte

Carlo generators [44] and adaptive weight optimization similar to the one implemented in

RacoonWW [45].

In version 1 of the real corrections the matrix elements have been calculated using the

Weyl-van-der-Waerden spinor technique in the formulation of ref. [46]. Soft and collinear

singularities are regularized using dimensional regularization. The phase-space integration,

implemented in C++, is based on RacoonWW, but the phase-space mappings are built

up in a more generic way very similar to the approach of Lusifer [47].

In version 2 of the real corrections the matrix elements have been generated with

Madgraph 4.1.33 [48]. As in the corresponding virtual corrections, soft singularities

are regularized by an infinitesimal gluon mass and collinear singularities by small quark

masses, which appear only in logarithms in the endpoint part of the subtraction function.

The Monte Carlo generator is a further development of the one used in COFFERγγ [49]

and for the calculation of the NLO corrections to pp → H + 2jets + X [50].

In version 2 we have also implemented two-cut-off slicing for the purpose of checking.

In this approach (as e.g. reviewed in ref. [51]), phase-space regions where real gluon emis-

sion contains soft or collinear singularities are defined by the auxiliary cutoff parameters

δs, δc ≪ 1 in the partonic centre-of-mass frame. In real gluon radiation processes, the

region

mg < k0 < δs

√
ŝ

2
, (2.10)

where k is the gluon momentum and
√

ŝ the partonic centre-of-mass energy, is treated in

soft approximation. The regions determined by

1 − cos(θgq) < δc, k0 > δs

√
ŝ

2
, (2.11)

where θgq is the angle between any light quark q (including b quarks) and the gluon,

are evaluated using collinear factorization. We again use an infinitesimal gluon mass and

quark masses as regulators. In this regularization the contributions of the soft regions for
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light quarks and of the collinear regions can be found in ref. [52], and the contributions

of the soft regions involving top quarks can easily be calculated with the explicit results

for the soft integrals in refs. [32, 53]. In the remaining phase space no regulators are used.

When adding all contributions, the dependence on the technical cuts cancels if the cut-off

parameters are chosen to be small enough so that the soft and collinear approximations

apply, i.e. the slicing result is correct up to terms of O(δs) and O(δc). Since the numerical

cancellations between the different contributions grow with smaller cut parameters, the

numerical error blows up if these parameters are too small.

3. Numerical results

We consider the process pp → t̄tbb̄ + X at the LHC, i.e. for
√

s = 14TeV. For the

top-quark mass, renormalized in the on-shell scheme, we take the numerical value mt =

172.6GeV [54]. All other QCD partons (including b quarks) are treated as massless par-

ticles, and collinear final-state configurations, which give rise to singularities, are recom-

bined into IR-safe jets using a kT-algorithm [55]. Specifically, we adopt the kT-algorithm

of ref. [56] and recombine all final-state b quarks and gluons with pseudorapidity |η| < 5

into jets with separation
√

∆φ2 + ∆y2 > D = 0.8 in the rapidity-azimuthal-angle plane.

Requiring two b-quark jets, this also avoids collinear singularities resulting from the split-

ting of gluons into (massless) b quarks. Motivated by the search for a t̄tH(H → bb̄) signal

at the LHC [24, 25], we impose the following additional cuts on the transverse momenta, the

rapidity, and the invariant mass of the two (recombined) b-jets:5 pT,b > 20GeV, |yb| < 2.5,

and mbb̄ > mbb̄,cut. We plot results either as a function of mbb̄,cut or for mbb̄,cut = 0. Note,

however, that the jet algorithm and the requirement of having two b jets with pT,b > 20GeV

in the final state sets an effective lower limit on the invariant mass mbb̄ of roughly 20GeV.

The outgoing (anti)top quarks are neither affected by the jet algorithm nor by phase-space

cuts.

We consistently use the CTEQ6 [57] set of parton distribution functions (PDFs), i.e.

we take CTEQ6L1 PDFs with a 1-loop running αs in LO and CTEQ6M PDFs with a

2-loop running αs in NLO, but the suppressed contribution from b quarks in the initial

state has been neglected. The number of active flavours is NF = 5, and the respective

QCD parameters are ΛLO
5 = 165MeV and ΛMS

5 = 226MeV. In the renormalization of the

strong coupling constant the top-quark loop in the gluon self-energy is subtracted at zero

momentum. In this scheme the running of αs is generated solely by the contributions of

the light-quark and gluon loops. This yields αs(mt)|LO = 0.1178730 . . . and αs(mt)|NLO =

0.1076396 . . .. By default, we set the renormalization and factorization scales, µR and µF,

to the common value µ0 = mt + mbb̄,cut/2.

3.1 Integrated cross sections

We first consider results for integrated cross sections. Figure 3 shows the total LO cross

section and the contribution induced by qq̄ annihilation at the LHC as a function of mbb̄,cut.

5The experimental analysis of tt̄H(H → bb̄) will select b quarks with transverse momenta much higher

than mb, justifying the approximation mb = 0.
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qq̄
gg + qq̄

σLO [fb]

µ0/2 < µ < 2µ0

mt = 172.6 GeV

pp → t̄tbb̄ + X

mbb̄, cut [GeV]

20018016014012010080604020
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Figure 3: LO cross section (gg + qq̄) versus contribution from qq̄ annihilation for pp → t̄tbb̄ + X

at the LHC as function of the cut mbb̄,cut on the invariant mass of the bb̄ pair.

For the chosen setup gg fusion dominates over the qq̄ channel by roughly a factor 17.

The renormalization and factorization scale dependence of the LO prediction is indicated

by bands resulting from varying the central scale µ0 up and down by a factor 2 which

corresponds to a variation of the cross section by a factor 1.6. Owing to the large power

of αs(µR)4 in the LO cross section the scale uncertainty is strongly dominated by the

renormalization scale dependence. We note that the LO cross sections have also been

reproduced with the program Sherpa [58].

Figure 4 illustrates the mutual agreement between NLO results obtained with dipole

subtraction and two-cutoff phase-space slicing. We find that within integration errors the

slicing results become independent of the cut-offs for δs
<∼ 10−3 and δc

<∼ 10−4 and agree

nicely with the result of the subtraction method. While the latter has been obtained

with 2 × 108 events, the slicing results are based on 109 events. Still the statistical error

obtained with the subtraction approach (indicated by the width of the band) is almost

an order of magnitude smaller than its slicing counterpart (errorbars), demonstrating the

higher efficiency of dipole subtraction. The results shown in the following are obtained

with the subtraction approach.

In figure 5 we show the scale dependence of the LO and NLO cross sections induced

by the qq̄ channel upon varying the renormalization and factorization scales in a uniform

or an antipodal way. We observe a sizeable reduction of the scale uncertainty upon going

from LO to NLO. Varying the scale up and down by a factor 2 changes the cross section

by 55% in LO and by 17% in NLO. At the central scale, the NLO correction is small,

i.e. ∼ 2.5%, and the LO and NLO cross sections are given by σLO = 85.522(26) fb and

σNLO = 87.698(56) fb. The numbers in parentheses are the errors of the Monte Carlo

integration for 2 × 108 events, where the virtual corrections are only calculated for each

– 9 –
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Figure 4: Comparison of the relative NLO corrections to pp(qq̄) → t̄tbb̄ + X at the LHC as

obtained with dipole subtraction and two-cutoff phase-space slicing using mbb̄,cut = 0 and µR =

µF = µ0 = mt.

NLO
LO

σ [fb]

µF = ξµ0

µR = ξµ0

mt = 172.6GeV

pp(qq̄) → t̄tbb̄ + X

ξ

84210.50.250.125

400

350

300

250

200

150

100

50

0

NLO
LO

σ [fb]

µF = µ0/ξ

µR = ξµ0

mt = 172.6GeV

pp(qq̄) → t̄tbb̄ + X

ξ

84210.50.250.125

400

350

300

250

200

150

100

50

0

Figure 5: Dependence of the LO and NLO cross sections of pp(qq̄) → t̄tbb̄ + X at the LHC for

mbb̄,cut = 0 and µ0 = mt.

5th event.

Figure 6 shows the LO and NLO cross sections as function of the cut mbb̄,cut on the bb̄

invariant mass, where the bands indicate the effect from a uniform or antipodal rescaling

of µR and µF by factors 1/2 and 2. The reduction of the scale uncertainty from about

±50% to ±17% and the smallness of the NLO correction holds true for the considered

range in mbb̄,cut, which is motivated by the search for a low-mass Higgs boson. While the
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Figure 6: LO and NLO cross sections for pp(qq̄) → t̄tbb̄ + X at the LHC as function of the cut

mbb̄,cut on the invariant mass of the bb̄ pair, with the bands indicating the scale dependence by

varying µR and µF by factors 1/2 and 2 in a uniform or antipodal way.

NLO prediction is consistent with the LO uncertainty band, the shape of the distribution

is distorted by the corrections. For the central scale we find an NLO correction of +2.5%

for small mbb̄,cut but a correction of −11% for mbb̄,cut = 200GeV.

3.2 Differential cross sections

In this section we consider results for distributions in variables related to the bb̄ pair (which

in the corresponding signal process pp → t̄tH + X results from the Higgs decay). For each

distribution we plot the absolute predictions in LO and in NLO and show the relative

corrections. These results are based on 2×108 events, and no cut on mbb̄ has been applied

such that the default scale is µ0 = mt.

We first show the distribution in the invariant mass mbb̄ of the bb̄ pair in figure 7.

The differential cross section drops strongly with increasing mbb̄, while the relative NLO

corrections become large and negative. The increase of the corrections with mbb̄ is larger

than the one seen in figure 6 since the scales are fixed to mt and not related to mbb̄. In

this paper we do not investigate in how far shape distortions induced by the corrections

could be absorbed into the LO upon using phase-space-dependent scales; we postpone this

issue until the full NLO corrections including gg fusion are available. The drop of the

distribution for small mbb̄ is due to the fact that the jet algorithm provides an effective

cut on this variable.

The distribution in the transverse momentum pT,bb̄ of the bottom-antibottom pair

shown in figure 8 looks very similar. Again, for our scale choice, the NLO corrections

reduce the cross section for large values of pT,bb̄.

Finally, we depict the distribution in the rapidity ybb̄ of the bottom-antibottom pair

in figure 9. In this case, the NLO corrections are rather flat at the level of 2.5% with a
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Figure 7: Distribution in the invariant mass mbb̄ of the bottom-antibottom pair (left) and corre-

sponding relative NLO corrections (right) for µR = µF = µ0 = mt.
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Figure 8: Distribution in the transverse momentum pT,bb̄ of the bottom-antibottom pair (left)

and corresponding relative corrections (right) for µR = µF = µ0 = mt.

slight increase in the backward and forward directions.

4. Conclusions

Predictions for the background process pp → t̄tbb̄ + X in NLO QCD are indispensable for

a thorough analysis of t̄tH production at the LHC.

In this paper we have made the first step towards the full NLO calculation upon eval-

uating the contribution from quark-antiquark annihilation. We made use of the Feynman-
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Figure 9: Distribution in the rapidity ybb̄ of the bottom-antibottom pair (left) and corresponding

relative corrections (right) for µR = µF = µ0 = mt.

diagrammatic approach augmented by recently developed reduction techniques for one-

loop tensor integrals. We have devoted an appendix to the general issue of rational terms

resulting from ultraviolet or infrared (soft or collinear) singularities within dimensional

regularization. In particular, we have shown that rational terms of infrared origin cancel in

truncated one-loop diagrams for arbitrary processes in the Feynman gauge and thus result

only from wave-function renormalization. Based on this observation we have formulated a

general recipe for the determination of rational terms in one-loop amplitudes.

Our calculation demonstrates that the Feynman-diagrammatic approach can be suc-

cessfully applied in the context of six-particle processes at the LHC, providing excellent

numerical stability and high speed. The CPU time needed to evaluate the full virtual

corrections with a single processor is of the order of 10−2 seconds per phase-space point.

Based on these encouraging results, we expect to be able to extend this calculation to the

technically more challenging gluon-fusion channel.
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A. Rational terms in one-loop amplitudes

In this appendix we elaborate on the issue of so-called rational terms that occur within

dimensional regularization when algebraic factors depending on the space-time dimension-
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ality D multiply loop integrals that contain UV or IR (soft and/or collinear) singulari-

ties, which give rise to poles in D − 4. The calculation of rational terms is of particu-

lar importance for so-called unitarity or generalized-unitarity methods (see refs. [10 – 13]

and references therein). In this context, these terms are typically obtained by recursion

relations [59 – 61] or by exploiting the full D-dimensional dependence of the tree ampli-

tudes [12, 62, 63]. Explicit recipes to derive rational terms in the context of specific

methods, which make use of loop integrals in shifted space-time dimensions or employ a

numerical reduction at the integrand level, can be found in refs. [64, 65]. Here we discuss

rational terms in the framework of one-loop calculations that employ an arbitrary set of

tensor (and scalar) loop integrals in D = 4 − 2ǫ dimensions and derive general properties

that are independent of the explicit algorithm used for tensor reduction.

Specifically we investigate rational terms resulting from unrenormalized truncated loop

amplitudes and do not consider external self-energy corrections (wave-function renormal-

ization constants). Since the latter enter via derivatives, our arguments cannot be applied,

but these contributions are easily calculated once and for all. We classify the different sit-

uations in which rational terms arise and describe simple procedures and results for their

actual calculation. In particular, we demonstrate that — for any scattering amplitude

involving quarks and gluons — the rational terms originating from IR poles cancel within

individual Feynman diagrams. This important property implies that, after separating the

rational terms of UV type, the coefficients of all IR-divergent tensor N -point integrals can

be evaluated in four dimensions. In practice the wave-function renormalization constants

represent the only source of rational terms of IR origin. This greatly simplifies the algebraic

manipulation of IR-divergent scattering amplitudes.

A.1 Classification of rational terms

Algebraic factors containing the dimensionality D result from two different sources in one-

loop amplitudes:

1. “Trace-like” contractions among metric tensors or with Dirac structures lead to ex-

pressions such as gµνgνµ = D, γµ 6aγνgµν = γµ 6aγµ = (2 − D) 6a, etc.

2. In the reduction of tensor one-loop integrals to standard scalar integrals (such as

the usual Passarino-Veltman reduction [35]) the tensor coefficients are eventually

obtained as linear combinations of the scalar integrals which form a basis of functions.

In such linear combinations, the tensor coefficients containing metric tensors in their

corresponding covariants receive prefactors with a dependence on D.

Thus, we can distinguish four different types of rational terms, classified according to type 1

or 2 being of UV or IR origin.

We employ the notation of ref. [5], where the covariant coefficients of N -point integrals

with rank R are denoted as TN
i1...iR

. It is convenient to treat the UV- and IR-divergent parts

of tensor integrals separately. To this end, we write

TN
i1...iR

= T̂N
i1...iR

+
RN

i1...iR

ǫUV
, (A.1)
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where RN
i1...iR

represents the (IR-finite) residue of the UV pole of TN
i1...iR

, and T̂N
i1...iR

is free

from UV divergences but can contain single and double poles in ǫIR resulting from soft or

collinear divergences. The only IR-divergent 2-point functions are those without a scale.

These represent a special case since they vanish as a result of cancellations between IR and

UV poles, i.e. they are formally proportional to (1/ǫUV −1/ǫIR). In order to separate these

UV and IR poles, we isolate the UV divergences by writing, in the notation of ref. [5],

B 0...0
︸︷︷︸

m

1...1
︸︷︷︸

n

(0, 0, 0) = B̂ 0...0
︸︷︷︸

m

1...1
︸︷︷︸

n

(0, 0, 0) +
(−1)n

n + 1

δm0

ǫUV
. (A.2)

The UV-subtracted part is IR divergent,

B̂ 0...0
︸︷︷︸

m

1...1
︸︷︷︸

n

(0, 0, 0) = −(−1)n

n + 1

δm0

ǫIR
, (A.3)

and exactly cancels against the UV pole. However, we do no set scaleless 2-point integrals

to zero and treat the rational terms resulting from 1/ǫUV and B̂...(0, 0, 0) separately. Since

scaleless 2-point functions require light-like momentum transfer (p2 = 0), such integrals

only occur in external self-energy corrections, i.e. in wave-function renormalization con-

stants, and in the reduction of higher-point functions (N > 2). In the latter case, as we

will show below, the rational terms of IR origin cancel out.

A.2 Rational terms of UV origin

The residues RN
i1...iR

of the UV poles of general one-loop tensor integrals are simple polyno-

mials of the external momenta and their explicit form is well known (see, e.g., appendix C

of ref. [4] and appendix A of ref. [5]). In particular, in contrast to IR divergences, the UV

poles do not depend on kinematical properties of the amplitude such as on-shell relations

of momenta. This renders rational terms of UV origin very simple: Terms of type 2 can be

directly included in the tensor reduction in a generic way, as e.g. done in refs. [4, 5, 35, 53],

and terms of type 1 can be extracted during the algebraic reduction of each Feynman

diagram by means of a trivial expansion,

f(D)TN
i1...iR

= f(D)T̂N
i1...iR

+

[
f(4)

ǫUV
− 2f ′(4)

]

RN
i1...iR

. (A.4)

In the following we discuss the remaining rational terms that result from f(D)T̂N
i1...iR

when

T̂N
i1...iR

contains poles of IR origin.

A.3 Rational terms of IR origin

IR divergences of one-loop integrals are more complicated than UV singularities, since they

depend on specific kinematical properties of amplitudes. According to Kinoshita [66] they

can be classified into soft and collinear singularities as indicated in figure 10:

• A soft singularity arises if a massless particle is exchanged between two on-shell

particles (see l.h.s. of figure 10). The singularity is logarithmic and originates from the

region in momentum space where the momentum transfer of the massless propagator

tends to zero.
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Figure 10: Kinematical configurations for soft (left) and collinear (right) IR singularities in one-

loop diagrams.

• A collinear singularity arises if an external line with a light-like momentum (e.g. a

massless external on-shell particle) is attached to two massless propagators (see r.h.s.

of figure 10). The singularity is also logarithmic and originates from the region in

momentum space where the loop momentum of the two massless propagators becomes

collinear to the momentum p of the external particle.

We first consider rational terms of IR origin that can result from the reduction of

tensor integrals (type 2). As can, for instance, be seen from the results of ref. [5], only

tensor coefficients TN
00... whose covariants involve the metric tensor can get D-dependent

prefactors in reduction identities and could, thus, lead to rational terms of type 2. In

section 5.8 of ref. [5] it was, however, shown that these tensor coefficients are IR finite.

Thus, no type 2 rational terms of IR origin can result at all.

Moreover, reparametrizations of tensor integrals resulting from shifts of the loop mo-

mentum and permutations of the propagators do not give rise to D-dependent factors

or relations between (IR-finite) tensor coefficients of type TN
00... and IR-singular integrals.

Therefore, in order to demonstrate that a certain diagram is free from IR rational terms

it is sufficient to find for each soft- or collinear-singular region a specific representation

that is manifestly free from IR rational terms of type 1, i.e. to find an expression in which

the corresponding IR-divergent part is expressed as a linear combination of IR-divergent

tensor (or scalar) integrals with coefficients that are independent of D. In explicit calcula-

tions, this can be achieved by means of an algebraic reduction that implements all possible

relations between the IR-divergent parts of tensor integrals. This task is non-trivial since

the standard scalar integrals do not provide a unique representation of IR divergences.

For instance, IR-finite parts of a diagram can be expressed as linear combinations of IR-

divergent 4-point and 3-point scalar integrals. More generally, IR-singular N -point tensor

integrals can be expressed in terms of IR-divergent 3- and 2-point scalar integrals plus

IR-finite terms. This reduction of IR singularities is explicitly implemented in the algo-

rithm presented in ref. [37] and can be summarized by the following formula (see eq. (3.14)

in ref. [37]) which relates the IR-divergent part of N -point tensor integrals to 3-point tensor
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integrals associated with the IR-divergent triangle subdiagrams,

TN
µ1...µR

(p0, . . . , pN−1,m0, . . . ,mN−1)

=
N−1∑

n=0

N−1∑

k=0
k 6=n,n+1

AnkCµ1...µR
(pn, pn+1, pk,mn,mn+1,mk) + IR-finite part. (A.5)

The coefficients Ank are independent of D since all relations between IR-divergent ten-

sor integrals are free from D-dimensional coefficients. For the explicit form of Ank and

details of the notation we refer to ref. [37]. In practice, using (A.5) and performing a

subsequent reduction to scalar integrals, one can construct a unique representation of IR

divergences in terms of 3- and 2-point scalar functions. The 3-point functions on the

right-hand side of (A.5) can be subtracted from the complete tensor integral leading to

an IR-finite expression which can be evaluated in 4 dimensions. Thus, only the re-added

3-point functions (A.5) have to be manipulated in D dimensions.

Using this approach, we have observed in explicit calculations for pp → t̄tH [27],

pp → t̄t + jet [28], and pp → WW + jet [16] that — after complete reduction of the IR

divergences — the coefficients of the IR-singular C0 and B0 functions are independent of

D, i.e. that rational terms of IR type cancel completely. This indicates, a posteriori, that

the terms f(D)T̂N
i1...iR

in (A.4) can be replaced by f(4)T̂N
i1...iR

from the beginning in the

calculation. In the following we demonstrate that, in the Feynman gauge, the cancellation

of IR rational terms is a general property of scattering amplitudes involving an arbitrary

number of external quarks and gluons.

To this end, we inspect the integrand of a general one-loop IR-divergent diagram in

momentum space and, in the spirit of ref. [37], we separate the IR singularities associated

with different soft and collinear regions and relate them to triangle subdiagrams. Using

on-shell relations we show that, in the soft and collinear regions, the integrands can be

cast into a form that is free from “trace-like” contractions, which potentially produce D-

dependent factors. In this way we obtain a generic representation of the IR singularities

that is manifestly free from rational terms of IR type.

The considerations presented in the following are not new. A similar approach is used,

for instance, in ref. [67], where IR and UV singularities are subtracted at the diagrammatic

level and isolated in simple process-independent terms in order to obtain numerically inte-

grable expressions. Using similar techniques, here we consider soft and collinear contribu-

tions from the perspective of an analytic calculation in terms of divergent one-loop tensor

and scalar integrals and discuss the rational terms associated with IR divergences.

Soft singularities: figure 11 shows all potentially soft-divergent subdiagrams contain-

ing quarks, gluons, or Faddeev-Popov ghosts. Since the soft singularity is related to zero-

momentum transfer on the internal line linking the two external particles, it is convenient

to identify the integration momentum q of the loop integral with the momentum on this

line. Since the soft singularity is logarithmic, all contributions of q in the numerator of the

integral are IR finite. In other words, being only after the IR-divergent part we can set q to

zero in the numerator and in propagators that do not belong to the soft-singular triangle
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Figure 11: Subdiagrams containing soft-singular integrals, with solid lines indicating quarks,

epicycles gluons, and dotted lines ghosts.

subdiagram. This procedure immediately kills the three subintegrals (b)–(d) with a quark

on the q line because of the factor 6q in the (massless) quark propagator. Diagram (g) with a

ghost coupling to external gluons does not contribute either, because the integrand receives

factors (depending on the gauge) of qεa → 0 or paεa = 0 from the coupling of the ghost to

the on-shell gluon with momentum pa and polarization vector εa. The amplitude M(soft,a)

of diagram (a), of course, involves a soft singularity, but without any D dependence, as

can be seen in the following example where we consider an outgoing quark-antiquark pair,

M(8a) =

∫

dDq
gµν

q2
ūa(pa) γµ

6q+ 6pa + ma

(q + pa)2 − m2
a

Γ(q)
6q− 6pb + mb

(q − pb)2 − m2
b

γν vb(pb)

=

∫

dDq
gµν

q2
ūa(pa) γµ

6pa + ma

(q + pa)2 − m2
a

Γ(0)
− 6pb + mb

(q − pb)2 − m2
b

γν vb(pb) + . . .

= −4(papb)

∫

dDq
ūa(pa) Γ(0) vb(pb)

q2[(q + pa)2 − m2
a][(q − pb)2 − m2

b ]
+ . . . . (A.6)

The Dirac structure Γ(q) contains the remaining part of the diagram and the ellipses stand

for terms that are not singular if the gluon becomes soft. For the last equality the Dirac

equation was used twice. The soft singularity, which is just contained in the scalar 3-point

function, does not receive D-dependent factors and, thus, does not deliver rational terms,

because Γ(0) is a tree-like structure and does not contain a trace-like contraction that would
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lead to factors of D. Such factors, e.g., arise in terms like γµΓ(0)γµ, which are absent in the

soft-singular part. The same reasoning applies also to all other possible fermion-number

flows in diagram (a). The remaining two diagrams (e) and (f) of figure 10 can be analysed

in the same way, leading to the same conclusion that no D-dependent factors multiply

soft-singular integrals. For brevity we show this only for diagram (f) explicitly,

M(soft,f) =

∫

dDq
gλσ

q2
εµ∗
a

gµν(q + 2pa)λ − gνλ(2q + pa)µ + gλµ(q − pa)ν
(q + pa)2

Γντ (q)

× ερ∗
b

gρτ (−q + 2pb)σ + gτσ(2q − pb)ρ − gσρ(q + pb)τ
(q − pb)2

=

∫

dDq
gλσ

q2
εµ∗
a

2gµνpa,λ − gνλpa,µ − gλµpa,ν

(q + pa)2
Γντ (0)

× ερ∗
b

2gρτpb,σ − gτσpb,ρ − gσρpb,τ

(q − pb)2
+ . . .

=

∫

dDq
[4(papb)ε

∗
a,νε∗b,τ−2(ε∗apb)pa,νε

∗
b,τ −2(paε

∗
b)ε

∗
a,νpb,τ +(ε∗aε

∗
b)pa,νpb,τ ]Γ

ντ (0)

q2(q + pa)2(q − pb)2

+ . . . , (A.7)

where we assume the external on-shell gluons to be outgoing. The last line of this result can-

not contain explicit factors of D, since those would require a trace-like contraction Γν
ν(0);

instead Γ is only contracted with momenta pa,b and polarization vectors ε∗a,b. Formally the

contraction Γν
ν(0) occurs, but with a proportionality to (paε

∗
a)(pbε

∗
b) which vanishes owing

to the on-shell condition of the gluons.

It is well known that the soft singularities are ruled by the eikonal current, with the

result that divergences connected to soft-particle exchange between a and b are proportional

to (papb). For M(soft,a) this factor is already explicit in (A.6), for M(soft,f) in (A.7) this fact

becomes obvious after making use of the Ward identities pa,νε
∗
b,τΓ

ντ (0) = ε∗a,νpb,τΓ
ντ (0) =

pa,νpb,τΓ
ντ (0) = 0, which are valid if all other external particles are on shell and all diagrams

contributing to Γ are summed over.

Collinear singularities: figure 12 shows all potentially collinear-divergent subdiagrams

containing (massless) quarks, gluons, or Faddeev-Popov ghosts. We identify the integration

momentum q with the momentum of one of the two propagators attached to the external

light-like line, which carries the momentum p (p2 = 0). The collinear singularity stems from

the region in q space where q is collinear to p, i.e. qµ = x(q)pµ with some scalar function

x(q). Since the singularity is only logarithmic, we do not change the singularity if we replace

qµ by x(q)pµ in the numerator of the amplitude. The on-shell conditions (Dirac equation

for quarks and transversality condition for gluons) then imply that the collinear-singular
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Figure 12: Subdiagrams containing collinear-singular integrals, with solid lines indicating quarks,

epicycles gluons, and dotted lines ghosts.

parts of diagrams (a)–(d) in figure 12 do not receive D-dependent factors:

M(coll,a) =

∫

dDq
1

q2
ū(p) γµ

6q+ 6p
(q + p)2

Γµ(q)

=

∫

dDq
1

q2
ū(p) γµ

[1 + x(q)] 6p
(q + p)2

Γµ(x(q)p) + . . .

=

∫

dDq
2[1 + x(q)]ū(p)pµΓµ(x(q)p)

q2(q + p)2
+ . . . , (A.8)

M(coll,b) =

∫

dDq
1

q2(q + p)2
[6q 6ε∗ (6q+ 6p)]αβ Γαβ(q)

=

∫

dDq
x(q)[1 + x(q)]

q2(q + p)2
[6p 6ε∗ 6p]αβ Γαβ(x(q)p) + . . .

=

∫

dDq
x(q)[1 + x(q)]

q2(q + p)2
2(ε∗p) [6p]αβ Γαβ(x(q)p) + . . .

= 0 + . . . , (A.9)

M(coll,c) =

∫

dDq εµ∗ gµν(q+2p)λ − gνλ(2q+p)µ + gλµ(q − p)ν
q2(q + p)2

Γνλ(q)

=

∫

dDq εµ∗ gµν(x(q)+2)pλ−gνλ(2x(q)+1)pµ + gλµ(x(q) − 1)pν

q2(q + p)2
Γνλ(x(q)p)+. . .

=

∫

dDq
[(x(q) + 2)ε∗νpλ + (x(q) − 1)ε∗λpν ] Γ

νλ(x(q)p)

q2(q + p)2
+ . . . , (A.10)

M(coll,d) =

∫

dDq εµ∗ qµ

q2(q + p)2
Γ(q)

=

∫

dDq εµ∗ x(q)pµ

q2(q + p)2
Γ(x(q)p)

= 0 + . . . . (A.11)

– 20 –



J
H
E
P
0
8
(
2
0
0
8
)
1
0
8

Note that diagrams (b) and (d) do not have collinear singularities at all. The collinear di-

vergences in diagrams (a) and (c) do not receive D-dependent factors since, in the collinear

region, the Γ terms do not take part in trace-like contractions like γµΓµ or Γν
ν , and terms

qτ1 . . . qτn inside Γ yield tensor structures [x(q)]npτ1 . . . pτn without metric tensors. The

above IR-divergent integrals are easily expressed in terms of usual 3-point functions by

observing that in the collinear limit all propagators inside Γ(x(q)p) are linear in x(q) owing

to (q + pk)
2 → 2x(q)ppk + p2

k. Thus, one can easily express the denominator of Γ(x(q)p) as

a linear combination of single propagators via partial fractioning, as done in ref. [37].

In summary we have obtained a representation of the soft and collinear singularities

of generic Feynman diagrams in terms of 3-point tensor integrals that are explicitly free

from D-dimensional prefactors. We can, thus, conclude that rational terms of IR origin

cancel in any unrenormalized scattering amplitude and can be neglected a priori in explicit

calculations. This property is a consequence of the Lorentz structure of the gluon couplings

and the logarithmic nature of IR singularities within the conventional Feynman gauge.

However, the cancellation of IR rational terms holds also in more general gauge-fixings,

as for instance the background-field Feynman gauge (see ref. [68] and references therein),

where the Lorentz structures in the gluon couplings and the poles of the propagators behave

as in the Feynman gauge.

We point out that the cancellation of IR rational terms is independent of the actual

reduction method employed in the calculation and is generally valid in any approach where

the IR-divergent parts of loop diagrams are entirely expressed in terms of tensor (or scalar)

N -point integrals in 4 − 2ǫ dimensions.

A.4 A recipe for determining rational terms

Based on the above considerations we can formulate a simple algorithm for determining all

rational terms of either UV or IR origin. For unrenormalized truncated one-loop diagrams,

i.e. excluding counterterm diagrams and self-energy corrections to external lines, proceed

as follows:

1. Separate UV and IR divergences of all tensor integrals as in (A.1), thereby keeping

track of the poles of all scaleless 2-point integrals as indicated in (A.2) and (A.3).

2. Extract the rational terms of UV origin as described in (A.4) including the rational

terms resulting from UV poles of scaleless 2-point integrals.

3. Ignore rational terms of IR origin upon replacing f(D) → f(4) on the right-hand side

of (A.4), because the arguments of the previous section show that all rational terms

resulting from [f(D)− f(4)]T̂N
i1...iR

in (A.4) compensate each other (even if they may

arise in intermediate steps).

This recipe does not apply to wave-function renormalization constants. These can be

easily calculated, and explicit results are, e.g., given in eqs. (2.27)–(2.28) of ref. [27].
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B. Four-dimensional reduction of Dirac chains to standard matrix ele-

ments

Here we outline the algebraic procedure employed to reduce Dirac structures to standard

matrix elements. The reduction is based on the strategy described in section 3.3 of ref. [29],

which is worked out for massless six-fermion processes, and involves additional features to

treat the Dirac chains associated with massive top quarks. This method exploits a set

of relations that do not give rise to denominators involving kinematical variables, thereby

avoiding possible numerical instabilities in exceptional phase-space regions. Refraining

from a detailed description of the entire reduction algorithm, which is quite involved, we

only outline the basic principles, which can be traced back to a few simple identities.

Tree and loop diagrams give rise to a large number of Dirac structures of the type

v̄(p1)γ
µ1 . . . p/i1 . . . u(p2) v̄(p3)γ

ν1 . . . p/j1 . . . u(p4) v̄(p5)γ
ρ1 . . . p/k1 . . . u(p6), (B.1)

which consist of gamma matrices (or slashed momenta) that are sandwiched between the

spinors v̄(pa) and u(pa+1) of the six (anti)fermions. For convenience we consider the crossed

process q̄qt̄tb̄b → 0, where all particles and their momenta are incoming. While the chains

associated with massless quarks (a = 1, 5) contain only odd numbers of Dirac matrices,

inside the top chain (a = 3) also even numbers of Dirac matrices appear. The open Lorentz

indices µi, νj , ρk in (B.1) are always pairwise contracted via the metric tensor.

The combinations of Dirac matrices occurring inside individual chains v̄(pa) . . . u(pa+1)

can easily be simplified by means of elementary relations:

1. Standard Dirac algebra permits to reduce γµ . . . γµ contractions inside Dirac chains,

to bring gamma matrices and p/ terms into a standard order through anti-commuta-

tions, and to eliminate p/2 terms.

2. All p/a and p/a+1 terms can be eliminated with the Dirac equation.

3. The p/i terms associated with one of the other external momenta (i 6= a, a + 1) can

be eliminated via momentum conservation.

After these simplifications, which we perform in D dimensions, we are left with a still

large number of Dirac structures of O(103). To obtain a further reduction we employ

additional identities which permit to shift p/ terms and γµ matrices with open indices from

one chain to another, thereby permitting further simplifications of type (i)–(iii). This part

of the reduction relies on four-dimensional relations and is performed after separation of

all (D − 4)-poles in dimensional regularization.

All four-dimensional identities are derived from basic relations which follow from

Chisholm’s identity (see eqs. (3.4)–(3.6) in ref. [29]) and read

γµγαγβω± ⊗ γµ = γµω± ⊗
(

γµγβγαω± + γαγβγµω∓

)

,

γαγµγβω± ⊗ γµ = γµω± ⊗
(

γβγµγαω± + γαγµγβω∓

)

,

γαγβγµω± ⊗ γµ = γµω± ⊗
(

γβγαγµω± + γµγαγβω∓

)

, (B.2)
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where ω± = (1±γ5)/2 are the chirality projectors and the tensor products connect different

Dirac chains. In order to exploit these relations we introduce chirality projectors inside

every Dirac chain, v̄(pa)Γu(pa+1) =
∑

λ=± v̄(pa)Γωλu(pa+1). Then we can use (B.2) to

exchange γαγβ-terms between chains that are connected via γµ-contractions. A simple

application of (B.2) is given by

γµγαγνω± ⊗ γµγβγν = 4gαβγµω± ⊗ γµω± + 4γβω± ⊗ γαω∓,

γµγαγνω± ⊗ γνγβγµ = 4gαβγµω± ⊗ γµω∓ + 4γβω± ⊗ γαω±. (B.3)

These identities permit to eliminate double Lorentz contractions between two Dirac chains.

Alternatively we can use (B.3) in the opposite direction, in combination with the Dirac

equation. This yields the relations

p/bω±u(pa) ⊗ p/aω∓u(pb) = (papb)γ
µω±u(pa) ⊗ γµω∓u(pb)

− ma

2
γµp/bω∓u(pa) ⊗ γµω∓u(pb)

− mb

2
γµω±u(pa) ⊗ γµp/aω±u(pb) + mamb-term,

v̄(pa)p/bω± ⊗ v̄(pb)p/aω∓ = (papb)v̄(pa)γ
µω± ⊗ v̄(pb)γµω∓

+
ma

2
v̄(pa)p/bγ

µω± ⊗ v̄(pb)γµω∓

+
mb

2
v̄(pa)γ

µω± ⊗ v̄(pb)p/aγµω∓ + mamb-term,

v̄(pa)p/bω± ⊗ p/aω±u(pb) = (papb)v̄(pa)γ
µω± ⊗ γµω±u(pb)

+
ma

2
v̄(pa)p/bγ

µω± ⊗ γµω±u(pb)

+
mb

2
v̄(pa)γ

µω± ⊗ p/aγµω∓u(pb), (B.4)

where the terms proportional to mamb vanish since the (anti)spinors associated with par-

ticles a and b belong to different Dirac chains and, thus, at least one of them is massless in

our case. The relations (B.4) can be used to reduce the number of p/i terms in the Dirac

chains.

We give two explicit examples to illustrate the four-dimensional reduction of Dirac

structures that involve one massive Dirac chain:

Example 1:

We reduce terms involving double contractions of the type γµγν ⊗ γµ ⊗ γν to struc-

tures involving only single contractions of Lorentz indices as much as possible. This

procedure somewhat generalizes Step 1 in section 3.3 of ref. [29]. Following the nota-

tion of that reference, we use the shorthand [Γ]ρij = v̄(pi)Γωρu(pj) and consider Dirac

structures of the type

[A0γ
µγν ]ρij [A1γµ]σ

kl
[A2γν ]

τ
mn , (B.5)

where the terms Ai consist of p/-products, each containing ni slashed momenta. By

means of the following two steps the structures (B.5) can be recursively reduced
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to [γµγν ]ρ34 [γµ]σ12 [γν ]
τ
56 and terms that are free from double contractions such as

γµγν ⊗ γµ ⊗ γν .

Step 1: If ni > 1 for i = 1 or 2, then we write Ai = Ãip/ap/b and, using (B.2), we

shift p/ap/b to the chain that contains A0γ
µγν . Then we perform the simplifications

(i)–(iii) in four dimensions. This step is iterated until n1, n2 ≤ 1.

Step 2: If n1, n2 ≤ 1 and n0 > 0, then we can write A0 = Ã0p/a with a ∈ {k, l,m, n},
since p/i,j are eliminated by means of (i)–(iii), also in four dimensions. In this case,

using (B.2), we shift p/a and one of the matrices γµ, γν from the A0-chain to that

Ai-chain where we can eliminate p/a by means of the Dirac equation and other sim-

plifications (i)–(iii). Then we restart with step 1.

This procedure recursively reduces the number of p/-terms n0+n1+n2 until n1, n2 ≤ 1

and n0 = 0, which automatically implies n0 = n1 = n2 = 0 since only one of the

three Dirac chains (the massive one) can contain an even number of Dirac matrices.

Thus the only γµγν ⊗ γµ ⊗ γν structure that survives is [γµγν ]ρ34 [γµ]σ12 [γν ]
τ
56.

Example 2:

We consider Dirac structures of the type [γµ]ρ12 [γµ 6pk]
σ
34 [6pl]

τ
56. Using the relations

[γµ]±12 [ 6p1γµ]±34 = − 1

m3
[γµ]±12 [ 6p3 6p1γµ]±34 = − 1

m3
[6p1 6p3γ

µ]±12 [γµ]±34 = 0,

[γµ]±12 [γµ 6p2]
∓
34 = +

1

m4
[γµ]±12 [γµ 6p2 6p4]

±
34 = +

1

m4
[γµ 6p4 6p2]

±
12 [γµ]±34 = 0, (B.6)

which follow from (B.2), and using momentum conservation, we can achieve that

the index k takes only the values k = 5, 6 for each chirality configuration (ρστ).

Eliminating one pl via momentum conservation, the index l can take three values,

leading to six different index pairs (kl) per chirality configuration. Two out of the

six possibilities can be easily eliminated by relations like (B.4):

[γµ 6p5]
±
34 [ 6p4]

±
56 = (p4p5) [γµγν ]

±
34 [γν ]±56 −

m4

2
[γµγν 6p5]

∓
34 [γν ]±56 , (B.7)

[γµ 6p6]
±
34 [ 6p4]

∓
56 = (p4p6) [γµγν ]

±
34 [γν ]∓56 −

m4

2
[γµγν 6p6]

∓
34 [γν ]∓56 ,

[γµ 6p5]
±
34 [ 6p3]

±
56 = −(p3p5) [γνγµ]±34 [γν ]±56 −

m3

2
[6p5γνγµ]±34 [γν ]±56 + 2p5,µ [1]±34 [6p3]

±
56 ,

[γµ 6p6]
±
34 [ 6p3]

∓
56 = −(p3p6) [γνγµ]±34 [γν ]∓56 −

m3

2
[6p6γνγµ]±34 [γν ]∓56 + 2p6,µ [1]±34 [6p3]

∓
56 ,

where the use of (B.4) in the last two equations required an anticommutation of

γµ 6p5,6 leading to additional contributions, and the terms proportional to m3,4 on

the right-hand side of (B.7) can be further reduced as in Example 1. Another (kl)

combination can be eliminated by using identities like (B.4) for the chains [. . . ]12 and

[. . . ]56 after shifting 6pk to [. . . ]12. In order to achieve this, one has to apply the Dirac

equation for the massive fermion inversely in the first step:

[γµ]±12 [γµ 6p6]
±
34 [ 6p1]

±
56 =

1

m4
[γµ]±12 [γµ 6p6 6p4]

∓
34 [6p1]

±
56

=
1

m4
[6p6 6p4γµ]±12 [γµ]∓34 [ 6p1]

±
56
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=
(p1p6)

m4
[γν 6p4γµ]±12 [γµ]∓34 [γν ]±56

=
(p1p6)

m4
[γµ]±12 [γµγν 6p4]

∓
34 [γν ]±56

= (p1p6) [γµ]±12 [γµγν ]
±
34 [γν ]±56 ,

[γµ]±12 [γµ 6p5]
±
34 [ 6p1]

∓
56 = · · · = (p1p5) [γµ]±12 [γµγν ]

±
34 [γν ]∓56 ,

[γµ]±12 [γµ 6p6]
∓
34 [ 6p2]

∓
56 = · · · = (p2p6) [γµ]±12 [γµγν ]

∓
34 [γν ]∓56 ,

[γµ]±12 [γµ 6p5]
∓
34 [ 6p2]

±
56 = · · · = (p2p5) [γµ]±12 [γµγν ]

∓
34 [γν ]±56 . (B.8)

One additional relation per chirality configuration results upon exploiting 0 = [γµ(6p1

+ · · ·+ 6 p6)γ
ν ]ρ12[γµ 6 pk]

σ
34[γν ]τ56 similar to Step 5 in section 3.3 of ref. [29], however,

this procedure is quite tedious.

The complete reduction algorithm consists of several procedures of this type, each consisting

of combinations of the identities (B.2)–(B.4) and the operations (i)–(iii).

In the case of massless 6-fermion processes [29], all Dirac structures were reduced to

10 types of SMEs of the form

[γµ]ρij [γµ]σ
kl

[p/a]
τ
mn , [p/a]

ρ
ij [p/b]

σ
kl [p/c]

τ
mn . (B.9)

Counting the different chiralities ρ, σ, τ = ±, which yield 8 or less combinations per type

of SME depending on the type, the total number of independent “massless” SMEs was 80.

In addition to these SMEs, the qq̄ → t̄tbb̄ reduction yields 15 types of SMEs of the form

[γµ]ρij [γµ]σkl [1]
τ
34 , [γµ]ρij [γν ]σkl [γµγν ]

τ
34 , [p/a]

ρ
ij [γµ]σkl [γµp/b]

τ
34 , [p/a]

ρ
ij [p/b]

σ
kl [1]

τ
34 , (B.10)

where the chain [. . . ]34, i.e. the top-quark chain, involves an even number (0 or 2) of Dirac

matrices. In the two independent reduction algorithms that we have implemented the total

number of SMEs for qq̄ → t̄tbb̄, counting all types (B.9)–(B.10) and chiralities ρ, σ, τ , is

148 and 156. As it is obvious, the presence of the top mass increases the number of the

SMEs by roughly a factor 2. Moreover, also the complexity of the form factors associated

with each SME grows considerably with respect to the case where all fermions are massless.

C. Benchmark numbers for the virtual corrections

In order to facilitate a comparison to our calculation, in this appendix we provide explicit

numbers on the squared LO amplitude and the corresponding virtual correction for a single

non-exceptional phase-space point. The set of momenta for the partonic reaction qq̄ → t̄tbb̄

is chosen as

pµ
q = (500,0,0,500),

pµ
q̄ = (500,0,0,−500),

pµ
t = (327.5045589027869,107.1276753641986,−107.9290580423663,−233.1168284428635),

pµ

t̄
= (276.6425142763093,−107.4949148022111,153.8289259355409,−107.3397668261919),
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pµ
b = (233.9459027189062,82.55875671042013,−77.70592645955253,204.6375480757531),

pµ

b̄
= (161.9070241019976,−82.19151727240762,31.80605856637796,135.8190471933023), (C.1)

with the components given in GeV and mt = 172.6GeV. We give numbers on the spin-

and colour-averaged squared LO amplitude |MLO|2 and on the sum of the relative virtual

NLO correction δvirt and the contribution δI of the I operator of the dipole subtraction

function as defined in ref. [38]. In more detail, we split the relative correction into a

contribution originating from closed fermion loops, δferm (comprising contributions from

the gluon self-energy, the triple-gluon vertex correction, and the renormalization constant

of the strong coupling), and the remaining loop corrections, called δbos, and δI. Note that

for qq̄ → t̄tbb̄ the fermionic part is IR finite, while δbos is IR divergent. Adding δI to δbos

or δvirt = δferm + δbos, all IR divergences cancel, and the sum is independent of the IR

regularization scheme. The values of the strong coupling constant at µR = mt in the setup

described in section 3 are

αs(mt)|LO = 0.1178730139006150, αs(mt)|NLO = 0.1076396017050965. (C.2)

At the phase-space point (C.1) we find

|MLO|2/g8
s = 0.4487410759198035 · 10−8 GeV−4,

|MLO|2/g8
s

∣
∣
∣
Madgraph

= 0.4487410759198011 · 10−8 GeV−4,

δvirt+I

∣
∣
∣
version1

= −0.1290522911043483,

δvirt+I

∣
∣
∣
version2

= −0.1290522911137204,

δferm

∣
∣
∣
version1

= −0.06326213639716407,

δferm

∣
∣
∣
version2

= −0.06326213639715421,

δbos+I

∣
∣
∣
version1

= −0.06579015470718421,

δbos+I

∣
∣
∣
version2

= −0.06579015471656619, (C.3)

where we divided out the strong coupling constant gs from |MLO|2. The agreement between

our two independent versions of the virtual corrections is typically about 10 digits at regular

phase-space points.
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